

NEW DITERPENOIDS FROM *CROTON ARGYROPHYLLOIDES**

FRANCISCO J. Q. MONTE, EDNA M. G. DANTAS and RAIMUNDO BRAZ F.†

Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Caixa Postal 3010, 60.000 Fortaleza, Ceará, Brasil; †Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Caixa Postal 74541, 23.851 Seropédica, Rio de Janeiro, Brasil

(Received 22 December 1987)

Key Word Index—*Croton argyrophyllloides*; Euphorbiaceae; new diterpenoids; ^1H and ^{13}C NMR.

Abstract—Two new diterpenoids, *ent*-Kaur-16-en-15-oxo-18-oic acid and 3, 12-dioxo-15,16-epoxy-4-hydroxyclerod-13 (16),14-diene, were isolated together with other known compounds from *Croton argyrophyllloides*. Structural determinations were made by spectrometric data and chemical reactions.

INTRODUCTION

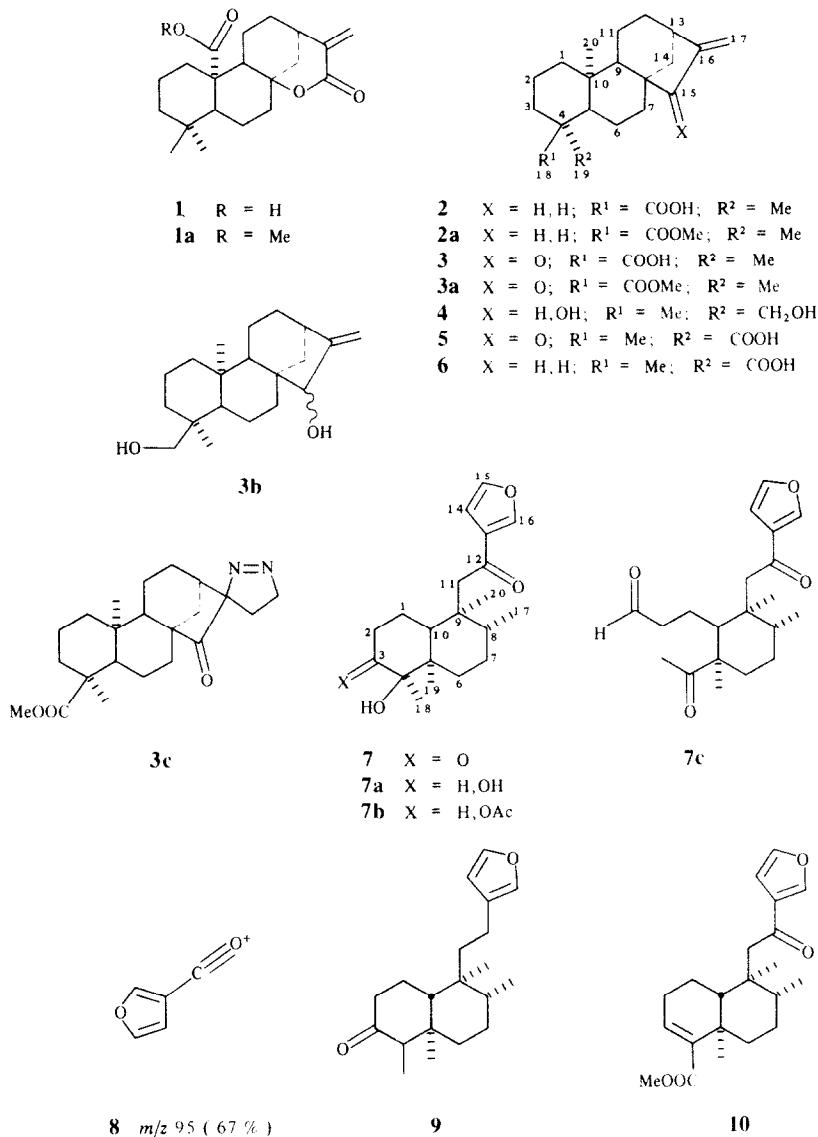
In the continuation of our chemical investigation of *Croton argyrophyllloides*, (Euphorbiaceae), a small shrub very common in the hinterland of the semi-arid regions of Brasil. We have isolated further constituents from this species. Previous work on the trunk wood has yeilded the tetracyclic diterpenes **1** and **1a** [1]. The present paper deals with the identification of two kauren acids (**2** and **3**) and one clerodene (**7**) diterpene.

RESULTS AND DISCUSSION

The spectral properties of **2**, $\text{C}_{20}\text{H}_{30}\text{O}_2$ ($[\text{M}]^+ m/z 302$) showed it to be kaur-16-en-18-oic acid which has been isolated previously [2]. Further confirmation of its identity was obtained by comparison of its ^{13}C NMR spectrum with other related diterpenoids (Table 1).

The new diterpene **3**, analysed for $\text{C}_{20}\text{H}_{28}\text{O}_3$ by both mass spectral ($[\text{M}]^+ m/z 316$) and ^{13}C NMR (Table 1) methods and gave an ^1H NMR spectrum typical of a kauren skeleton with two tertiary methyl groups [δ 1.16 (s) and 1.12 (s); Me-4 and Me-10] and an exocyclic double bond (δ 5.96 (br), H-17a; 5.26 (br), H-17b] in conjugation with a carbonyl group. The IR spectrum exhibited absorption bands at 3500–2500 and 1685 (COOH), 1640 and 890 ($\text{C}=\text{CH}_2$) and 1718 cm^{-1} ($\text{C}=\text{O}$ in 16-en-15-one system in kauren skeleton). Furthermore, it was possible to assign unambiguously the α,β -unsaturated carbonyl system in **3** by 1-pyrazoline (**3c**) formation using the well-known reaction of diazomethane with a conjugated carbonyl system [1].

The assignment of an equatorial-position for the carboxyl group at C-4 was deduced from the chemical shifts of C-4 and C-5 (δ 47.6 and 49.3, respectively). One axial carboxyl function at C-4 is indicated by ^{13}C NMR absorptions (e.g. **5**) at δ 43.7 (s, C-4) and δ 56.0 (d, C-5) [3]. This comparative analysis showed the expected shielding


Table 1. ^{13}C NMR chemical shifts data of diterpenoids **2**, **3** and **5**, **6** [3]

C	2	6	3	5
1	39.9	40.7	38.7	39.9
2	18.0	19.1	18.0	18.8
3	37.0	37.8	36.8	37.6
4	47.6	43.8	47.6	43.7
5	50.0	57.1	49.3	56.0
6	23.3	21.8	21.7	20.0
7	40.7	41.3	33.0	32.3
8	44.4	44.2	52.7	52.5
9	56.2	55.1	52.4	51.6
10	39.8	39.7	39.5	40.3
11	18.0	18.4	17.8	18.4
12	33.3	33.1	32.3	33.6
13	44.0	43.9	38.1	38.1
14	39.5	39.7	36.6	36.5
15	49.1	49.0	210.4	210.7
16	155.3	155.9	149.3	149.5
17	103.2	103.0	114.8	114.5
18	185.0	29.0	185.0	28.9
19	17.8	184.6	17.5	184.4
20	16.1	15.6	16.1	15.6

The spectra of **2** and **3** were obtained at 25.2 MHz in the Fourier transform mode in CDCl_3 solns. The δ values are in ppm downfield from TMS.

γ -effect on the C-5 by the oxygenated substituent at C-4 of epimer **3**. The assignments of the remaining signals in the ^{13}C NMR spectrum of **3** were made on the basis of the observed multiplicities (SFORD or APT), empirical shift rules [4] and comparison with data from model compounds **5** and **6** (Table 1). The stereochemistry of the carboxyl functions at C-4 of **3** was also revealed by ^1H NMR absorptions of the methyl groups Me-4 and Me-10 (**3**: δ 1.16 and 1.13, $\Delta\delta$ = 0.03; **5**: δ 1.27 and 1.03, $\Delta\delta$ = 0.24). On the other hand, different results were observed in the comparison between the chemical shifts of

* This paper is based on the M.Sc. thesis submitted by E. M. G. D. to the Universidade Federal do Ceará; for a preliminary communication see (1986) *Ciência e Cultura* (São Paulo) **38** (Suplemento), 627.

these methyl groups of **3b** (δ 1.12 and 0.74, $\Delta\delta$ = 0.38), derivative prepared by lithium aluminium hydride reduction of **3a**, and **4** (δ 1.05 and 0.99, $\Delta\delta$ = 0.06), also useful for the stereochemistry assignment at C-4 in other terpenoids.

The new clerodane diterpenoid **7** has a molecular formula of $C_{20}H_{28}O_4$, deduced by both mass spectral ($[M]^+$ m/z 332) and ^{13}C NMR (Table 2) methods. Its IR spectrum revealed the presence of a hydroxyl group (3420 cm^{-1}) and two carbonyl functions [1680 and $1645\text{ }\text{cm}^{-1}$ (α,β -unsaturated) cm^{-1}]. The ^1H NMR spectrum showed signals for a secondary methyl group (δ 0.90, d , J = 7 Hz), a β -substituted furan ring (δ 8.05, H-16; 7.47 H-15; 6.80, H-14) in conjugation with a carbonyl function (ν_{co} 1645 cm^{-1} ; δ_{co} 195.0) placed at the C-12 position and three tertiary methyl groups (δ 1.36, s , 3H; 0.86 s , 3H; 0.82, s , 3H). The peak at m/z 95 (**8**, 67%) in the mass spectrum was also used to assign the conjugated system involving the furan ring and the carbonyl function at C-12.

These data and the ^{13}C NMR spectra of **7** (Table 2) provided strong support for the structure and stereochemistry proposed. The assignments were based on the application of the usual shift parameters, comparison with literature data [5–10] and observed multiplicities of signals (Table 2). The assignment of an axial-position for the hydroxyl group at C-4 was deduced by chemical shifts of C-2, C-6, and C-10 (δ 36.1, 31.1 and 42.5, respectively) when compared with those of model compounds **9** [δ 39.4 (C-2), 41.5 (C-6) and 49.0 (C-10)] and **10** (δ 35.8 (C-6) and 47.6 (C-10)] [10]. These chemical shifts demonstrated the expected shielding γ -effect of the hydroxyl group at C-4 of **7**. The presence of hydroxyl group at C-4 of **7** was confirmed by chemical reactions. The natural diterpene **7** was treated with sodium borohydride (MeOH, 5°, 15 min) to give **7a**, which on acetylation with Ac_2O /pyridine yielded the monoacetate **7b**. On treatment with $NaIO_4$ ($H_2O/EtOH$, 25°, 48 hr), **7a** gave **7c**.

The structure and stereochemistry proposed for this

Table 2. ^{13}C NMR chemical shift data of clerodane diterpenoids **7**, and **9, 10** [10]

C	7	9	10*
1	23.7	23.2	
2	36.1	39.4	
3	215.0	216.6	
4	81.5	58.2	
5	45.2	41.8	
6	31.1	41.5	35.8
7	26.8	27.4	27.7
8	37.4	36.6	38.4
9	42.0	39.4	42.4
10	42.5	49.0	47.6
11	47.0	38.6	47.6
12	195.0	18.1	193.8
13	129.7	125.4	130.4
14	108.7	110.9	109.1
15	144.4	138.5	144.2
16	146.8	142.3	146.8
17	14.9	14.4	
18	21.8	6.8	
19	16.5	15.8	
20	17.8	18.3	

The spectrum of **7** was obtained at 25.2 MHz in the Fourier transform mode in CDCl_3 solns. The δ values are in ppm downfield from TMS.

*Only the chemical shift data useful to comparative analysis are described. The spectrum of **10** was recorded in benzene- d_6 solns.

clerodane diterpenoid **7** was confirmed by X-ray diffraction.*

EXPERIMENTAL

Mps: uncorr. NMR (^1H 60 MHz and 90 MHz; ^{13}C , 25.2 MHz) were recorded in CDCl_3 soln with TMS as int standard. MS were measured by direct inlet with 70 eV ionization.

Isolation of constituents. Root bark (2 kg) of *C. argyrophyllioides* Muell was extd with hexane at room temp. Solvent was removed under vacuum to yield 40.5 g of residue. Treatment of this residue (30 g) with hexane produced a crystalline material ($\mathbf{H}_1 = 25$ g). The filtered hexane soln was concd, affording a yellowish mass ($\mathbf{H}_2 = 5$ g). \mathbf{H}_2 was chromatographed on a silica gel column and eluted with hexane- CHCl_3 (1:1) yielding **2** (0.54 g) after crystallization from hexane. \mathbf{H}_1 (12 g) was chromatographed on a silica gel column and eluted with hexane- CHCl_3 (1:9) and CHCl_3 -MeOH (3:2). Fractions 29 and 37 were recrystallized from hexane-MeOH, affording **7** (8 g) and **3** (0.4 g), respectively.

The root bark, after extraction with hexane (see above), was extracted with EtOH at room temp. Evapn of solvent produced 360 g of residue. The presence of **3** and **7** in this ext was detected

*Personal communication of Dra. Yvone P. Mascarenhas (Instituto de Física e Química de São Carlos, Universidade de São Paulo, 13560-São Carlos, São Paulo, Brasil). For publication, in a specialized periodical, it is necessary to refine the data and to use the ORTEP program to obtain a better molecular drawing.

by TLC. These two natural diterpenes (**3** and **7**) were also observed (TLC) in the hexane and EtOH exts of the stem and its bark.

ent-Kaur-16-en-18-oic acid (kaurenic acid, 2). Mp 163-164° (hexane-MeOH). Me ester (**2a**). MP 118-120° (hexane-MeOH) (lit. [2] 120-121°).

ent-Kaur-16-en-15-oxo-18-oic acid (3). Mp 202-204° (hexane-MeOH). $[\alpha]_D^{25} 73^\circ$ (c, 2.21 in CHCl_3). EIMS m/z (rel. int.): 316 ([M] $^+$, 24), 315 (100), 282 (48), 270 (70), 255 (52), 227 (14), 199 (15), 148 (67), 122 (34), 121 (78), 105 (67), $\text{IR} \nu_{\text{max}}^{\text{KBr}} \text{cm}^{-1}$: 3500-2500, 1718, 1685, 1640, 890. ^1H NMR (60 MHz, CDCl_3): δ 5.90 (br, H-17), 5.25 (br, H-17), 1.16 (s, Me-10), 1.13 (s, Me-4). ^{13}C NMR (25.2 MHz, CDCl_3): see Table 1. *Me ester (3a).* CH_2N_2 treatment of **3** (60 mg) in the usual manner (30 min) yielded **3a**, mp 138-141° hexane-MeOH. EIMS m/z (rel. int.): 330 ([M] $^+$, 8), 270 (18), 255 (11), 167 (22), 149 (100), 121 (50). $\text{IR} \nu_{\text{max}}^{\text{KBr}} \text{cm}^{-1}$: 1718, 1640, 1240. ^1H NMR (60 MHz, CDCl_3): δ 5.96 (br, H-17), 5.26 (br, H-17), 3.65 (s, CO_2Me), 1.17 (s, Me-4 and Me-10). *Pyrazoline 3c.* CH_2N_2 treatment of **3** (250 mg) in the usual manner (12 hr) yielded **3c** (220 mg). EIMS m/z (rel. int.): 344 (M-N₂, 3), 274 (7), 243 (7), 215 (8), 167 (9), 149 (35), 121 (41). $\text{IR} \nu_{\text{max}}^{\text{KBr}} \text{cm}^{-1}$: 1715, 1700, 1380, 1240. ^1H NMR (60 MHz, CDCl_3): δ 4.60 (*t*, $J = 7$ Hz, CH_2 -17), 3.65 (s, OMe), 1.18 (s, Me-4 and Me-10).

ent-Kaur-16-en-15,18-diol (3b). The Me ester of kaur-16-en-15-ol-18-oic acid (100 mg in 15 ml Et_2O), prepared by treatment of **3** (590 mg) in MeOH with NaBH_4 (250 mg) at 5° (40 min) and then methylation with CH_2N_2 , was reduced with LiAlH_4 (50 mg) in 20 ml Et_2O . The mixt. was kept at 0° for 1 hr and usual work-up gave diol **3b**, mp 118-120° (hexane-MeOH). EIMS m/z (rel. int.): 304 ([M] $^+$, 7), 219 (23), 273 (77), 255 (48), 173 (25), 135 (42), 123 (69), 95 (80), 81 (100). $\text{IR} \nu_{\text{max}}^{\text{KBr}} \text{cm}^{-1}$: 3240, 1660, 890. ^1H NMR (60 MHz, CDCl_3): δ 4.98 (br, H-17), 4.79 (br, H-17), 3.80 (br, H-15), 3.10 (*d*, $J = 10$ Hz, H-18), 3.40 (*d*, $J = 10$ Hz, H-18), 1.12 (s, Me-10), 0.74 (s, Me-4).

3,12-Dioxo-15,16-epoxy-4-hydroxycyclodela-13(16),14-diene (7). Mp 122-124° (hexane-MeOH). $[\alpha]_D^{25} +41$ (c, 1.07 in CHCl_3). EIMS m/z (rel. int.): 332 ([M] $^+$, 3), 222 (11), 204 (10), 195 (5), 179 (17), 161 (26), 136 (100), 135 (18), 134 (16), 121 (27), 110 (12), 107 (14), 95 (67). $\text{IR} \nu_{\text{max}}^{\text{KBr}} \text{cm}^{-1}$: 3420, 1680, 1645, 1540, 1535, 1470, 1140, 860. ^1H NMR (90 MHz, CDCl_3): δ 8.05 (br, H-16), 7.46 (*t*, $J = 2$ Hz, H-15), 6.80 (*d*, $J = 2$ Hz, H-14), 3.65 (br, OH), 2.78 (s, CH_2 -11), 1.50 (s, Me-4), 0.90 (*d*, $J = 7$ Hz, Me-8), 0.86 (s, Me-5 and Me-10). ^{13}C NMR (25.2 MHz, CDCl_3): see Table 2.

3,4-Dihydroxy-15,16-epoxy-12-oxocycloda-13(16),14-diene (7a). **7** (260 mg) in MeOH (26 ml) was allowed to react with NaBH_4 (60 mg) for 16 min at 5°. After addition of H_2O and HCl (5%), the mixt. was extracted with EtOAc. The EtOAc soln was dried and evapd under vacuum giving **7a** (213 mg), mp 112-114° after crystallization from hexane-MeOH. EIMS m/z (rel. int.): 334 ([M] $^+$, 2) 224 (9), 206 (24), 149 (17), 136 (64), 121 (32), 95 (100). $\text{IR} \nu_{\text{max}}^{\text{KBr}} \text{cm}^{-1}$: 3350, 1660, 1550, 1500, 1150. ^1H NMR (60 MHz, CDCl_3): δ 8.00 (br, H-16), 7.37 (*t*, $J = 2$ Hz, H-15), 6.73 (*d*, $J = 2$ Hz, H-14), 3.50 (*m*, H-3), 2.70 (s, CH_2 -11), 1.16 (s, Me-4), 1.12 (s, Me-5), 0.87 (*d*, $J = 7$ Hz, Me-8), 0.84 (s, Me-10). *Monoacetate (7b).* Mp 121-123° (hexane-MeOH). EIMS m/z (rel. int.): 376 ([M] $^+$, 5), 358 (2), 334 (2), 316 (4), 298 (4), 266 (6), 206 (31), 173 (28), 121 (26), 95 (100). ^1H NMR (60 MHz, CDCl_3): δ 8.00 (br, H-16), 7.37 (br, H-15), 6.75 (br, H-14), 4.80 (br, H-3), 2.73 (s, CH_2 -11), 2.10 (s, Me-C=O), 1.20 (s, Me-4), 1.16 (s, Me-5), 0.90 (*d*, $J = 7$ Hz, Me-8), 0.87 (s, Me-10).

Compound 7c. A soln of **7a** (100 mg) in EtOH (30 ml) was treated with NaIO_4 , (120 mg) for 48 hr at room temp. After addition of H_2O , the ppt. was filtered and chromatographed on a silica gel column and eluted with CHCl_3 , affording **7c** (35 mg). Mp 110-113° (hexane-MeOH). ^1H NMR (60 MHz, CDCl_3):

δ 9.60 (s, CHO), 8.0 (br, H-16), 7.37 (br, H-15), 6.75 (br, H-14), 2.75 (s, CH_2 -11), 2.20 (s, Me-C=O), 1.20 (s, Me-4), 1.16 (s, Me-5), 0.87 (s, Me-10), 0.80 (d, J = 7 Hz, CH_3 -8).

Acknowledgements—This work was supported by CNPq research fellowships and by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Financiadora de Estudos e Projetos (FINEP). The authors are grateful to Professor Antonio J. R. da Silva, NPPN, Universidade Federal do Rio de Janeiro, for acquisition of the mass and ^{13}C NMR spectra.

REFERENCES

1. Monte, F. J. Q., Andrade, C. H. S., Craveiro, A. A. and Braz Fº, R. (1984) *J. Nat. Prod.* **47**, 55.
2. Hugel, G., Lods, L., Mellor, J. M., Theobald, D. W. et al. (1984) *J. Nat. Prod.* **47**, 55.
3. Hutchison, M., Lewer, P. and MacMillan, J. (1984) *J. Chem. Soc. Perkin Trans. I* 2363.
4. Wehrli, F. W. and Wirthlin, T. (1976) *Interpretation of Carbon-13 NMR Spectra*. Heyden, London.
5. Gambaro, V., Chamy, M. C., Garbarino, J. A., San-Martin, A. and Castilho, M. (1986) *Phytochemistry* **25**, 2175.
6. San-Martin, A., Givovich, A. and Castilho, M. (1986) *Phytochemistry* **25**, 264.
7. San-Martin, A., Rovirosa, J., Labbé, C., Givovich, A., Mahú, M. and Castillo, M. (1986) *Phytochemistry* **25**, 1393.
8. Fernandez, P., Rodriguez, B., Villegas, J. A., Perales, A., Savona, G., Piozzi, F. and Bueno, M. (1986) *Phytochemistry* **25**, 1405.
9. Manabe, S. and Nishino, C. (1986) *Tetrahedron* **42**, 4361.
10. Silveira, E. R. (1985) Ph.D. Thesis, University of Mississippi, U.S.A.